Keyword: radio-frequency
Paper Title Other Keywords Page
WEPLM60 Fast Sn-Ion Transport on Nb Surface for Generating NbxSn Thin Films and XPS Depth Profiling interface, electron, cavity, SRF 727
  • Z. Sun, M. Liepe, J.T. Maniscalco, T.E. Oseroff, R.D. Porter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • X. Deng
    University of Virginia, Charlottesville, Virginia, USA
  • D. Zhang
    Cornell University, Ithaca, New York, USA
  Funding: U.S. National Science Foundation under Award PHY-1549132, the Center for Bright Beams
In this work, we propose and demonstrate a fast and facile approach for NbxSn thin film deposition through the ion exchange reaction. By simply dipping a tin precursor on the Nb substrate surface, a ~600 nm thin film is generated due to the electronegativity differ-ence between Sn and Nb. Through X-ray photoelec-tron spectroscopy (XPS) depth profiling, the composi-tional information as a function of film thickness was obtained. Results showed a Sn layer on the film sur-face, Sn-rich and Nb-rich NbxSn layers as the majority of the film, and a ~60 nm Nb3Sn layer at the film/substrate interface. Quantitative analysis con-firmed stoichiometric Nb/Sn ratio for the Nb3Sn layer. This deposition method is demonstrated to be an alter-native choice for Nb3Sn film growth.
DOI • reference for this paper ※  
About • paper received ※ 05 September 2019       paper accepted ※ 15 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)