Author: Jansma, W.G.
Paper Title Page
MOPLO23 Investigation of Various Fabrication Methods to Produce a 180GHz Corrugated Waveguide Structure in 2mm Diameter ­0.5m ­Long Copper Tube for the Compact Wakefield Accelerator for FEL Facility 286
  • K.J. Suthar, D.S. Doran, W.G. Jansma, S.S. Sorsher, E. Trakhtenberg, G.J. Waldschmidt, A. Zholents
    ANL, Lemont, Illinois, USA
  • A.E. Siy
    UW-Madison/PD, Madison, Wisconsin, USA
  Funding: This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated by the Argonne National Laboratory under Contract No. DE­AC02­06CH11357.
Argonne National Laboratory is developing a 180 GHz wakefield structure that will house in a co-linear array of accelerators to produce free-electron laser-based X-rays. The proposed corrugated waveguide structure will be fabricated on the internal wall of 0.5m long and 2mm nominal diameter copper tube. The estimated dimensions of these parallel corrugations are 200 µm in pitch with 100 µm side length (height and width). The length scale of the structure and requirements of the magnetic field-driven dimensional tolerances have made the structure challenging to produce. We have employed several method such as optical lithography, electroforming, electron discharge machining, laser ablation, and stamping to produce the initial structure from a sheet form. The successive fabrication steps, such as bending, brazing, and welding, were performed to achieve the long tubular-structure. This paper discusses various fabrication techniques, characterization, and associated technical challenges in detail.
[1] A. Zholents et al., Proc. 9-th Intern. Part. Acc. Conf., IPAC2018, Vancouver, BC, Canada, p. 1266, (2018)
DOI • reference for this paper ※  
About • paper received ※ 27 August 2019       paper accepted ※ 06 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPLH01 Status of the Superconducting Undulator Program at the Advanced Photon Source 490
  • M. Kasa, E.R. Anliker, J.D. Fuerst, E. Gluskin, Q.B. Hasse, Y. Ivanyushenkov, W.G. Jansma, I. Kesgin, Y. Shiroyanagi
    ANL, Lemont, Illinois, USA
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
Since 2013 there has been at least one superconducting undulator (SCU) in operation at the Advanced Photon Source (APS), currently there are two planar SCUs and one helical SCU. The combined operational experience of SCUs at the APS is more than 11 years and counting. Through all these years, APS SCUs operated with the predicted or better than predicted radiation performance and with 99% availability. With this demonstrated reliability and experimentally confirmed spectral performance, the APS upgrade project is planning on leveraging the advantages of SCU technology. The present planar SCUs are comprised of ~1.1-m-long magnets, each operated within a 2-m-long cryostat, while the planar SCUs for the upgrade will have two ~1.8-m-long magnets operating within a 5-m-long cryostat. Progress is also being made in other areas of SCU development with work on an arbitrary polarizing SCU, referred to as SCAPE, and a planar SCU wound with Nb3Sn superconductor. A Nb3Sn SCU is being designed with two 1.3-m-long magnets within a 5-m-long cryostat, and installation is planned for 2021. Also under development are the alignment and magnetic measurement systems for use with the 5-m-long cryostat.
DOI • reference for this paper ※  
About • paper received ※ 26 August 2019       paper accepted ※ 02 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)