Author: Gevorkyan, G.S.
Paper Title Page
MOPLM16 Design of a 200 kV DC Cryocooled Photoemission Gun for Photocathode Investigations 136
SUPLH01   use link to see paper's listing under its alternate paper code  
  • G.S. Gevorkyan, S.S. Karkare
    Arizona State University, Tempe, USA
  • I.V. Bazarov, A. Galdi, J.M. Maxson
    Cornell University, Ithaca, New York, USA
  • L. Cultrera, W.H. Li
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  Funding: This work was supported by the U.S. National Science Foundation under Award No. PHY-1549132, the Center for Bright Beams.
Intrinsic emittance of photocathodes limits the brightness of electrons beams produced from photoemission guns. Recent advancements have shown that an order of magnitude improvement in intrinsic emittance over the commonly used polycrystalline metal and semiconductor cathodes is possible via use of single crystalline ordered surfaces of metals, semiconductors and other exotic materials at cryogenic temperatures as cathodes. However, due to practical design considerations, it is not trivial to test such cathodes in existing electron guns. Here we present the design of a 200kV DC electron gun being developed at the Arizona State University for this purpose.
poster icon Poster MOPLM16 [1.549 MB]  
DOI • reference for this paper ※  
About • paper received ※ 27 August 2019       paper accepted ※ 12 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)