Author: Crisp, J.L.
Paper Title Page
WEPLH04 Beam Envelope Reconstruction for FRIB-FS1 Transport Line Using Beam Position Monitors 810
  • T. Yoshimoto, S. Cogan, J.L. Crisp, K. Fukushima, S.M. Lidia, T. Maruta, P.N. Ostroumov, A.S. Plastun, T. Zhang, Q. Zhao
    FRIB, East Lansing, Michigan, USA
  Funding: This work is supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University.
The Facility for Rare Isotope Beam (FRIB) includes a heavy ion superconducting (SC) linac. Recently we completed beam commissioning of the Linac Segment 1 (LS1) and 45° bend section of the Folding Segment 1 (FS1). Four ion species, 40Ar9+, 20Ne6+, 86Kr17+ and 129Xe26+ were successfully accelerated to a beam energy of 20.3 MeV/u. We explored the possibility of non-invasive beam diagnostics for online beam envelope monitoring based on beam quadrupole moments derived from Beam Position Monitors (BPMs)*. In future operations, various ion beam species will be accelerated and minimization of beam tuning time is critical. To address this requirement, it is beneficial to use BPMs to obtain beam Twiss parameters instead of wire scanners. This paper reports the results of BPM-based beam Twiss parameters evolution in the FS1.
* R. E. Shafer, "Laser Diagnostic for High Current H beams", Proc. 1998 Beam Instrumentation Workshop (Stanford). A.I.P. Conf. Proceedings, (451), 191.
DOI • reference for this paper ※  
About • paper received ※ 27 August 2019       paper accepted ※ 16 November 2020       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)