Author: Yakovlev, V.P.
Paper Title Page
MOPLO24 A Novel Technique for Pulsed Operation of Magnetrons without Modulation of Cathode Voltage 290
  • G.M. Kazakevich, R.P. Johnson
    Muons, Inc, Illinois, USA
  • T.N. Khabiboulline, V.A. Lebedev, G.V. Romanov, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
  Modern pulsed superconducting accelerators of megawatt beams require efficient RF sources controllable in phase and power. For each Superconducting RF (SRF) cavity is desirable a separate RF source with power up to hundreds of kW with pulse duration in the millisecond range. The efficiency of the traditional RF sources (klystrons, IOTs, solid-state amplifiers) is lower than that of the magnetrons, while the cost of a unit of RF power is much higher. Therefore the magnetron-based RF sources would significantly reduce the capital and operation costs in comparison with the traditional RF sources. A recently developed an innovative technique makes possible the pulsed generation of magnetrons powered below the self-excitation threshold voltage. This technique does not require pulse modulators to form RF pulses. The magnetron operation in this regime is stable, low noise, controllable in phase and power, and provides higher efficiency than other types of RF power sources. It allows operation in pulsed modes with large duty factor. The developed technique and its experimental verification are considered and discussed.  
DOI • reference for this paper ※  
About • paper received ※ 29 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)